Theorems of Stein-Rosenberg Type. III. The Singular Case*

John J. Buoni[†] Youngstown State University Youngstown, Ohio 44555

Michael Neumann[‡] University of South Carolina Columbia, South Carolina 29208

and

Richard S. Varga⁸ Kent State University Kent, Ohio 44242

Submitted by Hans Schneider

ABSTRACT

In the theory of iterative methods, the classical Stein-Rosenberg theorem can be viewed as giving the simultaneous convergence (or divergence) of the extrapolated Jacobi (JOR) matrix J_{ω} and the successive overrelaxation (SOR) matrix \mathcal{E}_{ω} , in the case when the Jacobi matrix J_1 is nonnegative. As has been established recently by Buoni and Varga, necessary and sufficient conditions for the simultaneous convergence (or divergence) of J_{ω} and \mathcal{E}_{ω} have been established which do not depend on the assumption that J_1 is nonnegative. Our aim here is to extend these results to the singular case, using the notion of semiconvergence. In particular, for a real singular matrix A with nonpositive off-diagonal entries, we find conditions (Theorem 3.4) which imply that J_{ω} and \mathcal{E}_{ω} simultaneously semiconverge for all ω in the real interval [0, 1).

LINEAR ALGEBRA AND ITS APPLICATIONS 42:183-198 (1982)

183

© Elsevier Science Publishing Co., Inc., 1982

52 Vanderbilt Ave., New York, NY 10017

^{*}Dedicated to Professor John Todd on his seventieth birthday, 16 May 1981.

¹Research supported by the Air Force Office of Scientific Research at Kent State University during summer 1979 and summer 1980.

[‡]This author would like to thank Kent State University for making funds available for a visit to its Department of Mathematics.

[§]Research supported by the Air Force Office of Scientific Research and the Department of Energy.

1. INTRODUCTION

In Buoni and Varga [3], necessary and sufficient conditions have been given for the simultaneous convergence (and divergence) of the successive overrelaxation (SOR) iteration matrix \mathcal{L}_{ω} and the extrapolated Jacobi (JOR) iteration matrix J_{ω} . Such results, of course, are strongly similar in spirit to the classical Stein-Rosenberg theorem (cf. [2, 10, 11, 12]). The main purpose of this paper is to extend the results of [3] to the singular case. In particular, for a real singular matrix A with nonpositive off-diagonal entries, we find conditions (Theorem 3.4) which imply that the associated iteration matrices \mathcal{L}_{ω} and J_{ω} simultaneously semiconverge for all ω in the real interval [0, 1).

The remainder of this section is devoted to explaining notation and conventions. We denote by $\mathbb{C}^{n,n}$ the collection of all $n \times n$ complex matrices $A = [a_{i,j}]$. Similarly, \mathbb{C}^n denotes the complex *n*-dimensional vector space of all column vectors $\mathbf{v} := [v_1, \ldots, v_n]^T$, where $v_i \in \mathbb{C}$ for all $1 \le i \le n$. The restriction to real entries or components defines $\mathbb{R}^{n,n}$ and \mathbb{R}^n . Next, for any A in $\mathbb{C}^{n,n}$, its spectrum is denoted as usual by $\sigma(A) := \{\lambda \in \mathbb{C} : \det(\lambda I - A) = 0\}$, and its spectral radius is denoted by $\rho(A) := \max\{|\lambda| : \lambda \in \sigma(A)\}$. We further set

$$\gamma(A) := \max\{|\lambda| : \lambda \in \sigma(A) \text{ and } \lambda \neq 1\}.$$
 (1.1)

If $A = [a_{i,j}]$ in $\mathbb{R}^{n,n}$ has only nonnegative real entries, we write $A \ge \emptyset$, where \emptyset denotes the null matrix in $\mathbb{C}^{n,n}$.

Next, if $N(A) := \{x \in \mathbb{C}^n : Ax = 0\}$ denotes the null space of any $A \in \mathbb{C}^{n,n}$, then (cf. Ben-Israel and Greville [1, p. 170])

index
$$(A)$$
:=min $\{k: k=0, 1, 2, ..., \text{ and } N(A^k)=N(A^{k+1})\},\$

where as usual $A^0 := I$. Note that index(A) = 0 iff A is nonsingular, while $index(A) = k \ge 1$ iff the maximum of all orders of those Jordan blocks of A which correspond to zero eigenvalues of A is precisely k.

A matrix $A \in \mathbb{C}^{n,n}$ is said to be convergent if

$$\lim_{k \to \infty} A^k \tag{1.2}$$

exists and is the zero matrix. It is well known that A is convergent iff $\rho(A) < 1$. More generally, if the limit in (1.2) exists, we say that A is *semiconvergent*. Hensel [5], and later Oldenberger [8], have shown that A is semiconvergent iff (i) $\rho(A) \le 1$, (ii) if $\rho(A) = 1$, then $\lambda \in \sigma(A)$ with $|\lambda| = 1$

implies that $\lambda = 1$, and (iii) if $\rho(A) = 1$, then index(I-A) = 1, i.e., all elementary divisors associated with the eigenvalue 1 of A are linear (cf. Berman and Plemmons [2, p. 152]). We note that (i) and (ii) can be equivalently replaced by (iv) $\gamma(A) < 1$.

As in Buoni and Varga [3], we split a matrix $A \in \mathbb{C}^{n,n}$ into

$$A = D - L - U \qquad (D, L, U \text{ in } \mathbb{C}^{n, n}). \tag{1.3}$$

We assume throughout that D in (1.3) is always nonsingular. Note that we do not in general assume that D is diagonal, or that L and U are triangular. Associated with this splitting (1.3) for A is the (generalized) extrapolated Jacobi (JOR) matrix J_{ω} , defined for all $\omega \in \mathbb{C}$ by

$$J_{\omega} := I - \omega D^{-1} A, \qquad (1.4)$$

and the (generalized) successive overrelaxation (SOR) matrix \mathcal{L}_{ω} , defined for all $\omega \in \tilde{C}$ by

$$\mathcal{L}_{\omega} := (D - \omega L)^{-1} \{ (1 - \omega) D + \omega U \}, \qquad (1.5)$$

where, for convenience of notation, we set

$$\tilde{\mathbb{C}} := \{ \omega \in \mathbb{C} : D - \omega L \text{ is nonsingular} \}.$$
(1.6)

Because D is nonsingular, we note that $\tilde{\mathbb{C}}$ contains all sufficiently small ω . Of course, in the "usual" splitting of (1.3) where D is diagonal and L is strictly lower triangular, we have $\tilde{\mathbb{C}} = \mathbb{C}$.

Next, set $Z^{n,n} := \{A = [a_{i,j}] \in \mathbb{R}^{n,n} : a_{i,j} \leq 0 \text{ for all } i \neq j\}$. Then A is said to be an *M*-matrix if $A \in Z^{n,n}$ and if A can be expressed as

$$A = sI - B$$
, with $B \ge \emptyset$ and with $s \ge \rho(B)$. (1.7)

It is well known that A is a nonsingular [singular] *M*-matrix if (1.7) holds with $s > \rho(B)$ [$s = \rho(B)$]. In addition (cf. [2, p. 152]), A is said to be an *M*-matrix with property c if, for some s > 0, A = sI - B with $B \ge \emptyset$ where B/s is semiconvergent.

Next, as in [3], we set

$$\Omega_{J} := \{ \omega \in \mathbb{C} : \rho(J_{\omega}) < 1 \},$$

$$\mathfrak{D}_{J} := \{ \omega \in \mathbb{C} : \rho(J_{\omega}) > 1 \}$$
(1.8)

and

$$\Omega_{\mathcal{L}} := \left\{ \omega \in \tilde{\mathbb{C}} : \rho(\mathcal{L}_{\omega}) < 1 \right\},$$

$$\mathfrak{D}_{\mathcal{L}} := \left\{ \omega \in \tilde{\mathbb{C}} : \rho(\mathcal{L}_{\omega}) > 1 \right\}.$$
(1.9)

With this notation, we can state part of the classical Stein-Rosenberg theorem (cf. [2, 3, 10, 11, 12]) as the following

THEOREM 1.1. Given $A \in \mathbb{C}^{n,n}$, assume that the splitting of A in (1.3) is such that $D^{-1}L$ and $D^{-1}U$ are respectively strictly lower and strictly upper triangular matrices, and assume $J_1 \ge \emptyset$. Then

$$\Omega_I \cap \Omega_{\mathfrak{L}} \supset (0,1] \qquad if \quad \rho(J_1) < 1, \tag{1.10}$$

and

$$\mathfrak{D}_{I} \cap \mathfrak{D}_{\mathfrak{C}} \supset (0,1] \qquad if \quad \rho(J_{1}) > 1. \tag{1.11}$$

To conclude our discussion of notation and conventions, we set

$$S_I := \{ \omega \in \mathbb{C} : J_\omega \text{ is semiconvergent} \}$$
(1.12)

and

$$S_{\mathcal{C}} := \left\{ \omega \in \tilde{\mathbb{C}} : \mathcal{L}_{\omega} \text{ is semiconvergent} \right\}, \qquad (1.13)$$

which will be of later use to us.

2. RELATIONSHIPS BETWEEN J_{ω} AND \mathcal{C}_{ω}

In this section, we derive certain relationships between J_{ω} and \mathcal{L}_{ω} .

LEMMA 2.1. Given any $A \in \mathbb{C}^{n,n}$, then

$$N(D^{-1}A) = N(I-J_{\omega}) \quad and \quad index(D^{-1}A) = index(I-J_{\omega}) \quad (2.1)$$

186

for any $0 \neq \omega \in \mathbb{C}$. Similarly,

$$N(D^{-1}A) = N(I - \mathcal{L}_{\omega}) \tag{2.2}$$

for any $0 \neq \omega \in \tilde{\mathbb{C}}$. In addition, if $index(D^{-1}A) = \nu$, where $\nu \leq 1$, then also

$$\operatorname{index}(I - \mathcal{L}_{\omega}) = \nu \tag{2.3}$$

for all $0 \neq \omega \in \mathbb{C}$ sufficiently small.

Proof. Since $I-J_{\omega} = \omega D^{-1}A$ from (1.4), then (2.1) immediately follows for any $0 \neq \omega \in \mathbb{C}$. Next, since it can be verified from (1.5) that

$$Q(\omega) := \frac{1}{\omega} (I - \mathcal{L}_{\omega}) = (I - \omega D^{-1} L)^{-1} D^{-1} A \qquad (2.4)$$

for any $0 \neq \omega \in \tilde{\mathbb{C}}$, then (2.2) directly follows.

Next, assume that $\operatorname{index}(D^{-1}A)=1$ and that $D^{-1}A$ has precisely m (m>0) zero eigenvalues. Thus, in the Jordan normal form of $D^{-1}A$, there are exactly m Jordan blocks, corresponding to the eigenvalue zero, these blocks being all 1×1 . Hence, there are m linearly independent eigenvectors of $D^{-1}A$ corresponding to these m zero eigenvalues, and, from (2.4), these m eigenvectors are evidently also eigenvectors of $Q(\omega)$, corresponding to m zero eigenvalues. Because these eigenvectors are linearly independent, the Jordan normal form of $Q(\omega)$ contains at least m Jordan blocks corresponding to the eigenvalue zero, for each $0\neq \omega\in \tilde{\mathbb{C}}$. If m=n, so that all eigenvalues of $D^{-1}A$ are zero, then the hypothesis $\operatorname{index}(D^{-1}A)=1$ implies that $D^{-1}A\equiv \emptyset$. Thus, from (2.4), $I-\mathcal{L}_{\omega}\equiv \emptyset$ for all $\omega\in \tilde{\mathbb{C}}$, from which (2.3) follows for $\nu=1$. Hence, we may assume that m < n. Now, for small $\omega \neq 0$, we can also write (2.4) as

$$Q(\omega) = D^{-1}A + \omega D^{-1}L (I - \omega D^{-1}L)^{-1} D^{-1}A, \qquad (2.5)$$

so that $Q(\omega)$ can be viewed as a perturbation of $D^{-1}A$ for small $\omega \neq 0$. As such, to the remaining n-m nonzero eigenvalues $\{\xi_j\}_{j=1}^{n-m}$ of $D^{-1}A$, we can, by a classical result of Ostrowski [9, p. 334], associate n-m eigenvalues $\{\tau_j(\omega)\}_{j=1}^{n-m}$ of $Q(\omega)$ such that

$$|\xi_{j}-\tau_{j}(\omega)|=O(|\omega|^{1/n}) \quad \text{for all} \quad 1 \leq j \leq n-m, \quad (2.6)$$

for all $\omega \neq 0$ sufficiently small. Because of (2.6), we see that the Jordan normal

form of $Q(\omega)$, for $\omega \neq 0$ sufficiently small, then has precisely *m* Jordan blocks associated with the eigenvalue zero, these blocks being all 1×1 . Thus index $(Q(\omega))=1$ for all $\omega \neq 0$ sufficiently small, which gives (2.3) for $\nu = 1$. Finally, if index $(D^{-1}A)=0$, a similar use of (2.6) gives (2.3) for $\nu = 0$.

To conclude this section, we state without proof the following lemma, which is a slight modification of Buoni and Varga [3, Theorem 2.2].

LEMMA 2.2. Given any $A \in \mathbb{C}^{n,n}$ with $index(D^{-1}A) \leq 1$, then, for each $1 \neq \lambda(\omega) \in \sigma(\mathcal{L}_{\omega})$, there exists a $1 \neq \mu(\omega) \in \sigma(J_{\omega})$ such that

$$|\lambda(\omega) - \mu(\omega)| = O(|\omega|^{1+1/n})$$
(2.7)

for all $\omega \neq 0$ sufficiently small.

3. MAIN RESULTS

We now extend Theorem 3.1 of Buoni and Varga [3] to the simultaneous semiconvergence of J_{ω} and \mathcal{L}_{ω} .

THEOREM 3.1. Given any $A \in \mathbb{C}^{n,n}$ with $index(D^{-1}A) \leq 1$, assume that if $\sigma(D^{-1}A) \setminus \{0\}$ is not empty, then there is a real $\hat{\theta}$ with $0 \leq \hat{\theta} \leq 2\pi$ for which

$$\min\left[\operatorname{Re}\left(e^{i\hat{\theta}}\xi\right):\xi\in\sigma(D^{-1}A)\setminus\{0\}\right]=:\eta>0.$$
(3.1)

Then

$$[S_I \cap S_{\varrho}] \setminus \{0\} \neq \emptyset.$$
(3.2)

More precisely, if $\sigma(D^{-1}A)\setminus\{0\}$ is empty, then

$$\mathbf{S}_I \cap \mathbf{S}_{\mathcal{C}} = \tilde{\mathbf{C}},\tag{3.3}$$

while if $\sigma(D^{-1}A)\setminus\{0\}$ is not empty so that (3.1) applies, then there exists an $r_0 > 0$ for which

$$S_J \cap S_{\mathfrak{L}} \supset \left\{ \omega = r e^{i \hat{\theta}} : 0 \leq r < r_0 \right\}.$$

$$(3.4)$$

THEOREMS OF STEIN-ROSENBERG TYPE

Proof. First, consider the case when index $(D^{-1}A)=0$, i.e., $D^{-1}A$ is nonsingular. Obviously, $\sigma(D^{-1}A)\setminus\{0\}$ is nonempty and the hypothesis (3.1) applies. But then, from Theorem 3.1 of [3], $\Omega_I \cap \Omega_{\mathfrak{C}} \supset \{\omega = re^{i\hat{\theta}}: 0 < r < r_0\}$ for some $r_0 > 0$. On the other hand, as $J_0 = \mathcal{L}_0 = I$ from (1.4) and (1.5), we always trivially have that $0 \in S_I \cap S_{\mathfrak{C}}$. Hence, these two facts imply more than (3.4) in this case. Thus, we may assume that $\operatorname{index}(D^{-1}A)=1$. In this case, if $\sigma(D^{-1}A)=\{0\}$, then $D^{-1}A \equiv \emptyset$, so that $J_{\omega} = I = \mathcal{L}_{\omega}$ for all $\omega \in \tilde{\mathbb{C}}$ from (1.4) and (2.4). Thus, $S_I \cap S_{\mathfrak{C}} = \tilde{\mathbb{C}}$ in this case, which gives (3.3). Hence, we may assume in what follows that $\operatorname{index}(D^{-1}A)=1$ and that $\sigma(D^{-1}A)\setminus\{0\}$ is not empty.

Consider any $\omega := re^{i\hat{\theta}}$ with r > 0. From (1.4), we can express any eigenvalue $\mu(\omega)$ of J_{ω} as

$$\mu(\omega) = 1 - re^{i\theta} \xi, \quad \text{where} \quad \xi \in \sigma(D^{-1}A). \tag{3.5}$$

Direct computation with (3.5) and (3.1) yields

$$|\mu(\omega)|^2 = 1 - 2r \operatorname{Re}\left(e^{i\hat{\theta}}\xi\right) + r^2 |\xi|^2 \leq 1 - 2r\eta + r^2 |\xi|^2, \qquad (3.6)$$

for any $0 \neq \xi \in \sigma(D^{-1}A)$, from which it follows that there is an $r_1 > 0$ such that

$$\gamma(J_{re^{i\theta}}) < 1 \qquad \text{for all} \quad 0 < r < r_1. \tag{3.7}$$

Next, for any eigenvalue $\xi = 0$ of $D^{-1}A$, its associated eigenvalue $\mu(\omega)$ of $J(\omega)$ is necessarily unity from (3.5). Moreover, the hypothesis index $(D^{-1}A)=1$ implies from (2.1) of Lemma 2.1 that index $(I-J_{\omega})=1$ for any $0 \neq \omega \in \mathbb{C}$. Thus, from the conditions in Section 1 characterizing semiconvergence, J_{ω} is semiconvergent for all $\omega = re^{i\hat{\theta}}$ with $0 \leq r < r_1$, i.e.,

$$S_{J} \supset \left\{ \omega = r e^{i\hat{\theta}} : 0 \leq r < r_{1} \right\}.$$

$$(3.8)$$

Continuing, consider now \mathcal{L}_{ω} for $\omega := re^{i\hat{\theta}}$ with r > 0. From (2.3) of Lemma 2.1, it follows that, for all $\omega \neq 0$ sufficiently small, the Jordan blocks corresponding to any eigenvalue unity of \mathcal{L}_{ω} are necessarily 1×1 . Moreover, from (2.7) of Lemma 2.2, if $\lambda(\omega)$ is any eigenvalue of \mathcal{L}_{ω} with $\lambda(\omega) \neq 1$, there is an associated eigenvalue $\mu(\omega)$ of J_{ω} with $\mu(\omega) \neq 1$ such that

$$|\lambda(\omega)-\mu(\omega)|=\mathfrak{O}(r^{1+1/n}),$$

for all $\omega \neq 0$ sufficiently small, so that

$$|\lambda(\omega)|^2 \leq |\mu(\omega)|^2 + \mathfrak{O}(r^{1+1/n}).$$

Because $\mu(\omega) \neq 1$, we can apply (3.6), which gives

$$|\lambda(\omega)|^2 \leq 1 - 2r\eta + \mathcal{O}(r^{1+1/n}). \tag{3.9}$$

Thus, there is an $r_2 > 0$ such that

$$\gamma(\widehat{\mathbb{C}}_{re^{i\theta}}) < 1 \quad \text{for all} \quad 0 < r < r_2. \tag{3.10}$$

Thus, by the conditions characterizing semiconvergence, it follows that

$$S_{\mathfrak{L}} \supset \left\{ \omega = r e^{i \hat{\theta}} : 0 \leq r < r_2 \right\}.$$

$$(3.11)$$

On choosing $r_0 := \min(r_1; r_2)$, then (3.8) and (3.11) give the desired result of (3.4).

It is convenient to make the following

DEFINITION 3.2. Given any $A \in \mathbb{C}^{n,n}$, then $D^{-1}A$ is said to be strongly semistable if (i) index $(D^{-1}A) \leq 1$ and if (ii)

$$\min\left[\operatorname{Re}(\xi):\xi\in\sigma(D^{-1}A)\setminus\{0\}\right]>0,\qquad(3.12)$$

provided that $\sigma(D^{-1}A)\setminus\{0\}$ is not empty.

With the above definition, we have, from Theorem 3.1, the particular result of

COROLLARY 3.3. Given any $A \in \mathbb{C}^{n,n}$ for which $D^{-1}A$ is strongly semistable, then there is an $r_0 > 0$ for which

$$S_{I} \cap S_{\mathcal{C}} \supset [0, r_{0}). \tag{3.13}$$

In the above Corollary 3.3, it is natural to ask if there is a class of matrices for which, as in the original Stein-Rosenberg theorem [cf. (1.10)], the inclusion of (3.13) holds for the particular interval [0, 1). This is given in

190

THEOREMS OF STEIN-ROSENBERG TYPE

THEOREM 3.4. Given any $A = [a_{i,j}] \in \mathbb{Z}^{n,n}$ with $a_{i,i} > 0$ for all $1 \le i \le n$, let the matrices D, -L, and -U in the splitting (1.3) of A be respectively the diagonal, the strictly lower triangular, and the strictly upper triangular parts of A. If A is an M-matrix with index $(D^{-1}A) \le 1$, then

$$\mathbf{S}_{I} \cap \mathbf{S}_{\mathcal{C}} \supset [0, 1). \tag{3.14}$$

Proof. Since D is a positive diagonal matrix, the hypotheses imply that $D^{-1}A$ is also an M-matrix with index $(D^{-1}A) \le 1$. As such, $D^{-1}A$ is strongly semistable, so that (3.13) of Corollary 3.3 gives the existence of an $r_0 > 0$ with $S_J \cap S_{\mathfrak{C}} \supset [0, r_0)$. Thus, the object of this proof is to show that we can, in fact, choose $r_0 = 1$. Of course, if $D^{-1}A$ is nonsingular, i.e., index $(D^{-1}A) = 0$, then the statement $\Omega_J \cap \Omega_{\mathfrak{C}} \supset (0, 1]$ from (1.10), coupled with the fact that 0 is always in $S_J \cap S_{\mathfrak{C}}$, is stronger than that of (3.14). Hence, we may assume in what follows that $D^{-1}A$ is a singular M-matrix with index $(D^{-1}A) = 1$.

Since F an M-matrix with index $(F) \le 1$ is equivalent (cf. [2, p. 153]) to F an M-matrix with property c, then evidently $D^{-1}A$ is an M-matrix with property c. Thus every regular splitting of $D^{-1}A = M - N$ (i.e., $M^{-1} \ge 0$ and $N \ge 0$) satisfies $\rho(M^{-1}N) \le 1$ and $index(I - M^{-1}N) \le 1$ (cf. [2, p. 200]). However, since $D^{-1}A$ is singular, there is an $\mathbf{x} \ne \mathbf{0}$ such that $D^{-1}A\mathbf{x} = M\mathbf{x} - N\mathbf{x} = \mathbf{0}$, whence $M^{-1}N\mathbf{x} = \mathbf{x}$. Thus, $1 \in \sigma(M^{-1}N)$, so that in fact $\rho(M^{-1}N) = 1$ and $index(I - M^{-1}N) = 1$. Writing

$$D^{-1}A = I - \tilde{L} - \tilde{U}$$
, where $\tilde{L} := D^{-1}L$ and $\tilde{U} := D^{-1}U$,

consider the two splittings $D^{-1}A = M_1 - N_1 = M_2 - N_2$ of $D^{-1}A$, such that

$$M_1 := \frac{1}{r}I \text{ and } N_1 := \frac{1}{r} \left[(1-r)I + r\tilde{L} + r\tilde{U} \right], \quad \text{where} \quad 0 < r \le 1;$$

$$M_2 := \frac{1}{s} (I - s\tilde{L}) \text{ and } N_2 := \frac{1}{s} \left[(1-s)I + s\tilde{U} \right], \quad \text{where} \quad 0 < s \le 1$$

By definition, \tilde{L} and \tilde{U} are respectively strictly lower and strictly upper triangular nonnegative matrices, and it is readily verified that these two splittings of $D^{-1}A$ are regular splittings for the range of parameters considered. But, as it can be verified that $M_1^{-1}N_1 = J_r$ and $M_2^{-1}N_2 = \mathcal{L}_s$, then

$$\rho(J_r) = 1 \text{ and } \operatorname{index}(I - J_r) = 1 \quad \text{for all } 0 < r \le 1, \\ \rho(\mathcal{C}_s) = 1 \text{ and } \operatorname{index}(I - \mathcal{C}_s) = 1 \quad \text{for all } 0 < s \le 1.$$
(3.15)

We next claim that $\gamma(J_r) < 1$ for all $0 \le r < 1$. Obviously, as $\gamma(J_0) = 0$ since $J_0 = I$, we may assume that 0 < r < 1. Now from (1.4), $J_r = rJ_1 + (1-r)I \ge 0$ for any 0 < r < 1. If J_r is irreducible for some (and hence every) r with 0 < r < 1, the positivity of the diagonal entries for 0 < r < 1 implies that J_r is primitive (cf. [11, Theorem 2.9, p. 49]). Therefore all eigenvalues $\mu(r) \ne 1$ of J_r satisfy $|\mu(r)| < 1$ for all 0 < r < 1, whence $\gamma(J_r) < 1$ for $0 \le r < 1$. Similarly, if J_r is reducible for some (and hence every) r with 0 < r < 1. Similarly, if J_r is reducible for some (and hence every) r with 0 < r < 1. Similarly, if J_r is reducible for some (and hence every) r with 0 < r < 1, each irreducible diagonal block in its reduced normal form (cf. [11, p. 46]) will again have positive diagonal entries and hence be primitive, so that all eigenvalues $\mu(r) \ne 1$ of J_r again satisfy $|\mu(r)| < 1$ for all 0 < r < 1, whence $\gamma(J_r) < 1$ for S < r < 1. Combining this with the first statement of (3.15), we deduce that $S_f \supseteq [0, 1)$.

Finally, \mathcal{L}_s can be expressed

$$\mathcal{L}_{s} = \{I + s\tilde{L} + \cdots + s^{n-1}\tilde{L}^{n-1}\}\{(1-s)I + s\tilde{U}\},\$$

so that \mathcal{E}_s , for $0 \le s \le 1$, is a nonnegative matrix, all of whose diagonal entries are at least 1-s. As the above argument showing that $\gamma(J_r) \le 1$ for $0 \le r \le 1$ similarly shows that $\gamma(\mathcal{E}_s) \le 1$ for $0 \le s \le 1$, we deduce, with the second statement of (3.15), that $S_{\mathcal{E}} \supset [0,1)$. Thus, $S_f \cap S_{\mathcal{E}} \supset [0,1)$, giving the desired result of (3.14).

We first remark that Theorem 3.4 is equally valid with $index(D^{-1}A) \le 1$ replaced by $index(A) \le 1$. Also, the real inclusion of (3.14), is *sharp*, i.e., it is not in general possible to increase the real interval [0, 1) in (3.14), as examples in Section 4 will amply show.

We next derive a divergence-type result analogous to that of Theorem 3.4.

THEOREM 3.5. Given any $A \in \mathbb{C}^{n,n}$ with $index(D^{-1}A) > 1$, then

$$S_I = \{0\}.$$
 (3.16)

If $\sigma(D^{-1}A)\setminus\{0\}$ is not empty, assume for each real θ with $0 \le \theta \le 2\pi$ that

$$\min\left[\operatorname{Re}\left(e^{i\theta}\xi\right):\xi\in\sigma(D^{-1}A)\setminus\{0\}\right]\leq 0.$$
(3.17)

Then [cf. (1.8)]

$$\mathfrak{D}_I = \mathbb{C} \setminus \{0\}. \tag{3.18}$$

Proof. If index $(D^{-1}A) > 1$, it follows from (2.1) of Lemma 2.1 that index $(I-J_{\omega}) > 1$ for any $0 \neq \omega \in \mathbb{C}$. By definition, J_{ω} then fails to be semiconvergent for any $0 \neq \omega \in \mathbb{C}$. On the other hand, since $J_0 = I$ is trivially semiconvergent, then (3.16) follows.

Next, any eigenvalue $\mu(\omega)$ of J_{ω} can be expressed, using (1.4), as $\mu(\omega) = 1 - \omega \xi$ where $\xi \in \sigma(D^{-1}A)$. Writing $\omega = re^{i\theta}$, then

$$|\mu(\omega)|^2 = 1 - 2r \operatorname{Re}(e^{i\theta}\xi) + r^2 |\xi|^2.$$
(3.19)

If $\sigma(D^{-1}A)\setminus\{0\}$ is not empty, then any $\xi \in \sigma(D^{-1}A)\setminus\{0\}$ is nonzero. With (3.19) and the hypothesis of (3.17), we have, for each r>0 and each real θ , that there is $\mu(re^{i\theta}) \in \sigma(J_{re^{i\theta}})$ for which

$$|\mu(re^{i\theta})|^2 \ge 1 + r^2 |\xi|^2 > 1$$

Consequently, $\rho(J_{\omega}) > 1$ for each $0 \neq \omega \in \mathbb{C}$, which gives (3.18).

Finally, as in [3], we can interpret the conditions (3.1) and (3.17) geometrically. Assuming $\sigma(D^{-1}A)\setminus\{0\}$ is not empty, set

$$K[\sigma(D^{-1}A)\setminus\{0\}]:=\text{closed convex hull of }\sigma(D^{-1}A)\setminus\{0\}.$$
 (3.20)

With this notation, we establish the following analog of [3, Theorem 3.4].

THEOREM 3.6. Given $A \in \mathbb{C}^{n,n}$, assume that $\sigma(D^{-1}A) \setminus \{0\}$ is not empty. Then

$$[S_{I} \cap S_{\mathfrak{C}}] \setminus \{0\} \neq \emptyset \quad iff \quad 0 \notin K \Big[\sigma (D^{-1}A) \setminus \{0\} \Big] \text{ and } \operatorname{index} (D^{-1}A) \leq 1.$$
(3.21)

Proof. With the hypothesis that $\sigma(D^{-1}A)\setminus\{0\}$ is not empty, assume that index $(D^{-1}A)\leq 1$ and that $0\notin K[\sigma(D^{-1}A)\setminus\{0\}]$. This latter assumption implies that there is a real $\hat{\theta}$ with $0\leq\hat{\theta}<2\pi$ for which (3.1) is valid. Consequently, from (3.2) of Theorem 3.1, then $[S_I \cap S_{\mathbb{C}}]\setminus\{0\}\neq \emptyset$.

Conversely, suppose that $[S_I \cap S_{\mathcal{C}}] \setminus \{0\} \neq \emptyset$. Then, from Theorem 3.5, it follows that $\operatorname{index}(D^{-1}A) \leq 1$. Thus, it remains to show that $0 \notin K[\sigma(D^{-1}A) \setminus \{0\}]$. Suppose, on the contrary, that $0 \in K[\sigma(D^{-1}A) \setminus \{0\}]$, where $\sigma(D^{-1}A) \setminus \{0\}$ is nonempty. It easily follows that (3.17) is then valid, so that from (3.18)

of Theorem 3.5, $\mathfrak{D}_I = \mathbb{C} \setminus \{0\}$, whence $S_I = \{0\}$. As this contradicts the assumption that $[S_I \cap S_{\mathbb{C}}] \setminus \{0\} \neq \emptyset$, then $0 \notin K[\sigma(D^{-1}A) \setminus \{0\}]$.

4. SOME EXAMPLES

In this section, we present five examples, the first three of which show that the real inclusion (3.14) of Theorem 3.4 is *sharp*, i.e., it cannot be in general increased.

Consider first the matrix

$$A_{1}:=\begin{bmatrix} 1 & -1 & 0 & 0 & 0\\ 0 & 1 & -1 & 0 & 0\\ -\frac{1}{2} & 0 & 1 & -\frac{1}{2} & 0\\ 0 & 0 & 0 & 1 & -1\\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad \text{with} \quad D_{1}:=I. \quad (4.1)$$

Clearly, A_1 is an element of $Z^{5,5}$, and, on writing $A_1 =: I - B_1$, the directed graph of the nonnegative matrix B_1 shows that B_1 is irreducible and primitive with $\rho(B_1)=1$. Thus, A_1 is a singular *M*-matrix, and it also follows that index $(D_1^{-1}A_1)=1$. Therefore the associated iteration matrices $J_r^{A_1}$ and $\mathcal{L}_r^{A_1}$ [for the "usual" splitting of (1.3)] are both necessarily semiconvergent for any r in [0, 1), from (3.14) of Theorem 3.4. In addition, since $J_1^{A_1}=B_1$, the above properties for B_1 give that $J_1^{A_1}$ is semiconvergent. On the other hand, direct computations give us that

$$\mathcal{L}_{1}^{A_{1}} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$
$$= :\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \qquad (4.2)$$

so that $\sigma(\mathcal{L}_1^{A_1}) = \{0\} \cup \sigma(E)$. Since the 4×4 matrix E above is nonnegative, irreducible, and cyclic of index 2 with $\rho(E) = 1$, then (cf. [11, p. 38]) ± 1 are

eigenvalues of E and $\mathcal{L}_1^{A_1}$. Thus, $\mathcal{L}_1^{A_1}$ cannot be semiconvergent, and thus $1 \notin S_I \cap S_{\mathcal{C}}$.

Next, a well-known result of Kahan (cf. [11, p. 75]) gives that

$$\rho(\mathcal{L}_r^{A_1}) \ge |r-1| \qquad \text{for any complex number } r. \tag{4.3}$$

Consequently, for any $\delta > 0$, $\rho(\mathbb{C}^{A_1}_{-\delta}) \ge 1 + \delta > 1$, whence $-\delta \notin S_J \cap S_{\mathbb{C}}$ for any $\delta > 0$. This establishes the sharpness of the inclusion (3.14) in Theorem 3.4 for the matrix A_1 of (4.1).

We remark that Professor Hans Schneider (personal communication) originally used the matrix A_1 of (4.1) to negatively answer a question, posed by Neumann and Plemmons [7, p. 273], on whether $\gamma(\mathcal{L}_1) \leq \gamma(J_1)$ is valid for any $A \in \mathbb{Z}^{n,n}$ having (i) all diagonal entries of A positive, and (ii) $\rho(J_1) = \rho(\mathcal{L}_1) = 1$. The matrix A_1 of (4.1), which satisfies these hypotheses, provides a counterexample, since

$$\gamma(J_1^{A_1}) < \gamma(\mathcal{C}_1^{A_1}) = 1.$$

$$(4.4)$$

More precisely, calculations we have performed for this matrix of (4.1) give that

$$\gamma(J_{r}^{A_{1}}) < \gamma(\mathcal{E}_{r}^{A_{1}}) < 1 \quad \text{for all} \quad 0.925943 < r < 1, \gamma(\mathcal{E}_{r}^{A_{1}}) < \gamma(J_{r}^{A_{1}}) < 1 \quad \text{for all} \quad 0 < r < 0.925943.$$
(4.5)

We remark that the inequality in (4.4) also provides a *counterexample* to a result in Berman and Plemmons [2, p. 200, Theorem 6.21, part 2].

Next, consider the matrix

$$A_2:=\begin{bmatrix} 1 & -1 & 0\\ -\frac{1}{2} & 1 & -\frac{1}{2}\\ 0 & -1 & 1 \end{bmatrix}, \quad \text{with} \quad D_2:=1.$$
(4.6)

On writing $A_2 =: I - B_2$, the directed graph of the nonnegative matrix B_2 shows that B_2 is cyclic of index 2 with $\sigma(B_2) = \{-1, 0, 1\}$. Thus, A_2 is a singular *M*-matrix, and it also follows that $\operatorname{index}(D_2^{-1}A_2) = 1$. Thus, (3.14) of Theorem 3.4 again gives that the iteration matrices $J_r^{A_2}$ and $\mathcal{L}_r^{A_2}$ both semiconverge for any r in [0, 1). Now, however, since $J_1^{A_2} = B_2$, the above cyclic property of B_2 shows that $J_1^{A_2}$ does not semiconverge (cf. [6]). On the

other hand, since

$$\mathcal{L}_{1}^{A_{2}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix},$$
(4.7)

then $\mathcal{L}_1^{A_2}$ semiconverges. Since the inequality (4.3) also applies in this case, we see that the inclusion (3.14) of Theorem 3.4 is sharp for the matrix A_2 of (4.6). In this case, we remark that

$$\gamma(\mathcal{L}_r^{A_2}) < \gamma(J_r^{A_2}) < 1 \qquad \text{for all} \quad 0 < r < 1, \tag{4.8}$$

which resembles one of the inequalities of the classical Stein-Rosenberg theorem in the nonsingular case.

Next, consider the matrix

$$A_3:=\begin{bmatrix} 1 & -1 & 0\\ 0 & 1 & -1\\ -1 & 0 & 1 \end{bmatrix}, \quad \text{with} \quad D_3:=I. \tag{4.9}$$

It is easily seen that $\sigma(D_3^{-1}A_3) = \{0, 1-\eta, 1-\eta^2\}$, where η is any primitive root of $\eta^3 = 1$, and that A_3 is a singular *M*-matrix with $\operatorname{index}(D_3^{-1}A_3) = 1$. Thus, from Theorem 3.4, $J_r^{A_3}$ and $\mathcal{E}_r^{A_3}$ both semiconverge for all $0 \le r < 1$. However, since $\sigma(J_1^{A_3}) = \{1, \eta, \eta^2\}$ and since $\sigma(\mathcal{E}_1^{A_3}) = \{-1, 0, +1\}$, neither $J_1^{A_3}$ nor $\mathcal{E}_1^{A_3}$ semiconverges. Since the inequality (4.3) also applies in this example, we thus see that the inclusion (3.14) of Theorem 3.4 is sharp for the matrix A_3 of (4.9). In this case, as in the previous example, we have that

$$\gamma(\mathcal{L}_r^{A_3}) < \gamma(J_r^{A_3}) < 1 \quad \text{for all} \quad 0 < r < 1.$$
(4.10)

We remark that the three examples given above were selected to illustrate all possible situations concerning the nonsemiconvergence of \mathcal{L}_1 and/or J_1 for singular *M*-matrices with index $(D^{-1}A)=1$.

Finally, in each of the three examples given above, it is the case that there exists an $r_i > 0$ such that [cf. (4.5), (4.8), (4.10)]

$$\gamma(\mathcal{L}_{r}^{A_{i}}) < \gamma(J_{r}^{A_{i}}) < 1$$
 for all $0 < r < r_{i}, \quad i = 1, 2, 3.$ (4.11)

This, in spirit, resembles a consequence of the classical Stein-Rosenberg

theorem in the convergent case, i.e., $\rho(\mathcal{L}_r^A) < \rho(J_r^A) < 1$ for all $0 < r \le 1$. That (4.11) fails to be true for every singular *M*-matrix with index $(D^{-1}A)=1$ is the point of our next example.

Consider the matrix

$$A_4:=\begin{bmatrix} 1 & -1 & 0\\ -\frac{1}{2} & 1 & -\frac{1}{2}\\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix}, \quad \text{with} \quad D_4:=I. \quad (4.12)$$

Reasoning as in the previous examples, A_4 is a singular *M*-matrix with index $(D_4^{-1}A)=1$, so that $S_J \cap S_{\mathbb{C}} \supseteq [0,1)$ from (3.14) of Theorem 3.4. In this case, it can be vierfied that $\sigma(A_4) = \{0, \frac{3}{2}, \frac{3}{2}\}$, and that $\operatorname{index}(\frac{3}{2}I - A_4) = 2$. Moreover, it can be further verified that

$$\gamma(J_{r^{A_{4}}}^{A_{4}}) < \gamma(\hat{\mathbb{L}}_{r^{A_{4}}}^{A_{4}}) < 1 \quad \text{for all} \quad 0 < r < \frac{3}{4}, \\ \gamma(\hat{\mathbb{L}}_{r^{A_{4}}}^{A_{4}}) < \gamma(J_{r^{A_{4}}}^{A_{4}}) < 1 \quad \text{for all} \quad \frac{3}{4} < r < \frac{4}{3}.$$

$$(4.13)$$

The first of the inequalities of (4.13) thus provides a counterexample to (4.11) holding for all singular *M*-matrices with $index(D^{-1}A)=1$. It is interesting to remark that there is further intertwining of $\gamma(J_r^{A_4})$ and $\gamma(\mathcal{L}_r^{A_4})$ in this example, in that

$$\begin{split} \gamma(J_{r}^{A_{4}}) < &\gamma(\mathcal{E}_{r}^{A_{4}}) \quad \text{for all} \quad 0 < r < \frac{3}{4}, \\ \gamma(\mathcal{E}_{r}^{A_{4}}) < &\gamma(J_{r}^{A_{4}}) \quad \text{for all} \quad \frac{3}{4} < r < 3.154701, \\ \gamma(J_{r}^{A_{4}}) < &\gamma(\mathcal{E}_{r}^{A_{4}}) \quad \text{for all} \quad 3.154701 < r < \infty. \end{split}$$

We remark that the inequalities of the first display of (4.13) are just the *reverse* of what one expects in the classical Stein-Rosenberg theorem, and this is due in this case to the fact that $index(\frac{3}{2}I-A_4)=2$. (For an explanation of this inequality reversal, see Buoni and Varga [4].)

We finally remark that it is *not necessary* that the index of some nonzero eigenvalue [of a singular *M*-matrix with $index(D^{-1}A)=1$] exceed unity to achieve both a counterexample to (4.11) and an analog of the intertwining of (4.14). Specifically, with

$$A_5 := \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \quad \text{with} \quad D_5 := I,$$
 (4.15)

it can be verified that

$$\begin{split} \gamma(J_r^{A_5}) &\leq \gamma(\mathcal{L}_r^{A_5}) \qquad \text{for all} \quad -\infty < r < 2 - \sqrt{2} ,\\ \gamma(\mathcal{L}_r^{A_5}) &\leq \gamma(J_r^{A_5}) \qquad \text{for all} \quad 2 - \sqrt{2} < r < 2 + \sqrt{2} , \\ \gamma(J_r^{A_5}) &\leq \gamma(\mathcal{L}_r^{A_5}) \qquad \text{for all} \quad 2 + \sqrt{2} < r < \infty . \end{split}$$

REFERENCES

- 1 A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
- 2 A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1979.
- 3 J. J. Buoni and R. S. Varga, Theorems of Stein-Rosenberg type, in Numerical Mathematics (R. Ansorge, K. Glashoff, and B. Werner, eds.), ISNM 49, Birkäuser, Basel, 1979, pp. 65-75.
- 4 J. J. Buoni and R. S. Varga, Theorems of Stein-Rosenberg type II. Optimal paths of relaxation in the complex domain, in *Elliptic Problem Solvers* (M. H. Schultz, ed.), Academic Press, New York, 1981, pp. 231–240.
- 5 K. Hensel, Über Potenzreihen von Matrizen, J. Reine Angew. Math. 155:107-110 (1926).
- 6 C. D. Meyer and R. J. Plemmons, Convergent powers of a matrix with applications to iterative methods for singular linear systems, SIAM J. Numer. Anal. 14:699-705 (1977).
- 7 M. Neumann and R. J. Plemmons, Convergent nonnegative matrices and iterative methods for consistent linear systems, *Numer. Math.* 31:265–279 (1978).
- 8 R. Oldenburger, Infinite powers of matrices and characteristic roots, *Duke Math.* J. 6:357-361 (1940).
- 9 A. M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic, New York, 1973.
- 10 P. Stein and R. Rosenberg, On the solution of linear simultaneous equations by iteration, J. London Math. Soc. 23:111-118 (1948).
- 11 R. S. Varga, *Matrix Iterative Analysis*, Prentice-Hall, Englewood Cliffs, N.J., 1962.
- 12 D. M. Young, Iterative Solution of Large Linear Systems, Academic, New York, 1971.

Received 18 February 1981; revised 26 May 1981