Theorems of Stein-Rosenberg Type. III. The Singular Case*

John J. Buoni ${ }^{\dagger}$
Youngstown State University
Youngstown, Ohio 44555

Michael Neumann ${ }^{\ddagger}$
University of South Carolina
Columbia, South Carolina 29208
and

Richard S. Varga ${ }^{\text {§ }}$
Kent State University
Kent, Ohio 44242

Submitted by Hans Schneider

Abstract

In the theory of iterative methods, the classical Stein-Rosenberg theorem can be viewed as giving the simultaneous convergence (or divergence) of the extrapolated Jacobi (JOR) matrix J_{ω} and the successive overrelaxation (SOR) matrix \mathcal{E}_{ω}, in the case when the Jacobi matrix J_{1} is nonnegative. As has been established recently by Buoni and Varga, necessary and sufficient conditions for the simultaneous convergence (or divergence) of J_{ω} and \mathfrak{L}_{ω} have been established which do not depend on the assumption that J_{1} is nonnegative. Our aim here is to extend these results to the singular case, using the notion of semiconvergence. In particular, for a real singular matrix A with nonpositive off-diagonal entries, we find conditions (Theorem 3.4) which imply that J_{ω} and \mathfrak{l}_{ω} simultaneously semiconverge for all ω in the real interval $[0,1)$.

[^0]
1. INTRODUCTION

In Buoni and Varga [3], necessary and sufficient conditions have been given for the simultaneous convergence (and divergence) of the successive overrelaxation (SOR) iteration matrix \mathfrak{L}_{ω} and the extrapolated Jacobi (JOR) iteration matrix J_{ω}. Such results, of course, are strongly similar in spirit to the classical Stein-Rosenberg theorem (cf. [2, 10, 11, 12]). The main purpose of this paper is to extend the results of [3] to the singular case. In particular, for a real singular matrix A with nonpositive off-diagonal entries, we find conditions (Theorem 3.4) which imply that the associated iteration matrices e_{ω} and J_{ω} simultaneously semiconverge for all ω in the real interval $[0,1)$.

The remainder of this section is devoted to explaining notation and conventions. We denote by $\mathbb{C}^{n, n}$ the collection of all $n \times n$ complex matrices $A=\left[a_{i, 1}\right]$. Similarly, \mathbb{C}^{n} denotes the complex n-dimensional vector space of all column vectors $v:=\left[v_{1}, \ldots, v_{n}\right]^{T}$, where $v_{i} \in \mathbb{C}$ for all $l \leqslant i \leqslant n$. The restriction to real entries or components defines $\mathbb{R}^{n, n}$ and \mathbb{R}^{n}. Next, for any A in $\mathbb{C}^{n, n}$, its spectrum is denoted as usual by $\sigma(A):=\{\lambda \in \mathbb{C}: \operatorname{det}(\lambda I-A)=0\}$, and its spectral radius is denoted by $\rho(A):=\max \{|\lambda|: \lambda \in \sigma(A)\}$. We further set

$$
\begin{equation*}
\gamma(A):=\max \{|\lambda|: \lambda \in \sigma(A) \text { and } \lambda \neq 1\} \tag{1.1}
\end{equation*}
$$

If $A=\left[a_{i, i}\right]$ in $\mathbb{R}^{n, n}$ has only nonnegative real entries, we write $A \geqslant \mathcal{O}$, where 0 denotes the null matrix in $\mathbb{C}^{n, n}$.

Next, if $N(A):=\left\{\mathbf{x} \in \mathbb{C}^{n}: A x=0\right\}$ denotes the null space of any $A \in \mathbb{C}^{n, n}$, then (cf. Ben-Israel and Greville [1, p. 170])

$$
\operatorname{index}(A):=\min \left\{k: k=0,1,2, \ldots, \text { and } N\left(A^{k}\right)=N\left(A^{k+1}\right)\right\}
$$

where as usual $A^{0}:=I$. Note that $\operatorname{index}(A)=0$ iff A is nonsingular, while index $(A)=k(\geqslant 1)$ iff the maximum of all orders of those Jordan blocks of A which correspond to zero eigenvalues of A is precisely k.

A matrix $A \in \mathbb{C}^{n, n}$ is said to be convergent if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} A^{k} \tag{1.2}
\end{equation*}
$$

exists and is the zero matrix. It is well known that A is convergent iff $\rho(A)<1$. More generally, if the limit in (1.2) exists, we say that A is semiconvergent. Hensel [5], and later Oldenberger [8], have shown that A is semiconvergent iff (i) $\rho(A) \leqslant 1$, (ii) if $\rho(A)=1$, then $\lambda \in \sigma(A)$ with $|\lambda|=1$
implies that $\lambda=1$, and (iii) if $\rho(A)=1$, then $\operatorname{index}(I-A)=1$, i.e., all elementary divisors associated with the eigenvalue 1 of A are linear (cf. Berman and Plemmons [2, p. 152]). We note that (i) and (ii) can be equivalently replaced by (iv) $\gamma(A)<1$.

As in Buoni and Varga [3], we split a matrix $A \in \mathbb{C}^{n, n}$ into

$$
\begin{equation*}
A=D-L-U \quad\left(D, L, U \text { in } \mathbb{C}^{n, n}\right) \tag{1.3}
\end{equation*}
$$

We assume throughout that D in (1.3) is always nonsingular. Note that we do not in general assume that D is diagonal, or that L and U are triangular. Associated with this splitting (1.3) for A is the (generalized) extrapolated Jacobi (JOR) matrix J_{ω}, defined for all $\omega \in \mathbb{C}$ by

$$
\begin{equation*}
J_{\omega}:=I-\omega D^{-1} A \tag{1.4}
\end{equation*}
$$

and the (generalized) successive overrelaxation (SOR) matrix E_{ω}, defined for all $\omega \in \tilde{\mathbb{C}}$ by

$$
\begin{equation*}
\mathfrak{E}_{\omega}:=(D-\omega L)^{-1}\{(1-\omega) D+\omega U\} \tag{1.5}
\end{equation*}
$$

where, for convenience of notation, we set

$$
\begin{equation*}
\tilde{\mathbb{C}}:=\{\omega \in \mathbb{C}: D-\omega L \text { is nonsingular }\} \tag{1.6}
\end{equation*}
$$

Because D is nonsingular, we note that $\tilde{\mathbb{C}}$ contains all sufficiently small ω. Of course, in the "usual" splitting of (1.3) where D is diagonal and L is strictly lower triangular, we have $\tilde{\mathbb{C}}=\mathbb{C}$.

Next, set $Z^{n, n}:=\left\{A=\left[a_{i, j}\right] \in \mathbb{R}^{n, n}: a_{i, j} \leqslant 0\right.$ for all $\left.i \neq j\right\}$. Then A is said to be an M-matrix if $A \in Z^{n, n}$ and if A can be expressed as

$$
\begin{equation*}
A=s I-B, \quad \text { with } B \geqslant 9 \text { and with } s \geqslant \rho(B) . \tag{1.7}
\end{equation*}
$$

It is well known that A is a nonsingular [singular] M-matrix if (1.7) holds with $s>\rho(B)[s=\rho(B)]$. In addition (cf. [2, p. 152]), A is said to be an M-matrix with property c if, for some $s>0, A=s I-B$ with $B \geqslant 0$ where B / s is semiconvergent.

Next, as in [3], we set

$$
\begin{align*}
& \Omega_{J}:=\left\{\omega \in \mathbb{C}: \rho\left(J_{\omega}\right)<1\right\} \\
& \mathscr{D}_{J}:=\left\{\omega \in \mathbb{C}: \rho\left(J_{\omega}\right)>1\right\} \tag{1.8}
\end{align*}
$$

and

$$
\begin{align*}
& \Omega_{\mathfrak{C}}:=\left\{\omega \in \tilde{\mathbb{C}}: \rho\left(\mathscr{L}_{\omega}\right)<1\right\} \tag{1.9}\\
& \mathfrak{D}_{\mathbb{C}}:=\left\{\omega \in \tilde{\mathbb{C}}: \rho\left(\mathscr{E}_{\omega}\right)>1\right\} .
\end{align*}
$$

With this notation, we can state part of the classical Stein-Rosenberg theorem (cf. $[2,3,10,11,12]$) as the following

Theorem l.1. Given $A \in \mathbb{C}^{n, n}$, assume that the splitting of A in (1.3) is such that $D^{-1} L$ and $D^{-1} U$ are respectively strictly lower and strictly upper triangular matrices, and assume $J_{1} \geqslant 0$. Then

$$
\begin{equation*}
\Omega_{I} \cap \Omega_{\mathfrak{E}} \supset(0,1] \quad \text { if } \rho\left(J_{1}\right)<1 \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{D}_{J} \cap \mathfrak{D}_{\mathfrak{R}} \supset(0,1] \quad \text { if } \quad \rho\left(J_{1}\right)>1 . \tag{1.11}
\end{equation*}
$$

To conclude our discussion of notation and conventions, we set

$$
\begin{equation*}
S_{J}:=\left\{\omega \in \mathbb{C}: J_{\omega} \text { is semiconvergent }\right\} \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\mathfrak{L}}:=\left\{\omega \in \tilde{\mathbb{C}}: \mathfrak{L}_{\omega} \text { is semiconvergent }\right\}, \tag{1.13}
\end{equation*}
$$

which will be of later use to us.
2. RELATIONSHIPS BETWEEN J_{ω} AND \mathfrak{E}_{ω}

In this section, we derive certain relationships between J_{ω} and E_{ω}.
Lemma 2.1. Given any $A \in \mathbb{C}^{n, n}$, then

$$
\begin{equation*}
N\left(D^{-1} A\right)=N\left(I-J_{\omega}\right) \quad \text { and } \quad \operatorname{index}\left(D^{-1} A\right)=\operatorname{index}\left(I-J_{\omega}\right) \tag{2.1}
\end{equation*}
$$

for any $0 \neq \omega \in \mathbb{C}$. Similarly,

$$
\begin{equation*}
N\left(D^{-1} A\right)=N\left(I-\mathcal{L}_{\omega}\right) \tag{2.2}
\end{equation*}
$$

for any $0 \neq \omega \in \tilde{\mathbb{C}}$. In addition, if $\operatorname{index}\left(D^{-1} A\right)=\nu$, where $\nu \leqslant 1$, then also

$$
\begin{equation*}
\operatorname{index}\left(I-\mathfrak{e}_{\omega}\right)=\nu \tag{2.3}
\end{equation*}
$$

for all $0 \neq \omega \in \mathbb{C}$ sufficiently small.

Proof. Since $I-J_{\omega}=\omega D^{-1}$ A from (1.4), then (2.1) immediately follows for any $0 \neq \omega \in \mathbb{C}$. Next, since it can be verified from (1.5) that

$$
\begin{equation*}
Q(\omega):=\frac{1}{\omega}\left(I-巳_{\omega}\right)=\left(I-\omega D^{-1} L\right)^{-1} D^{-1} A \tag{2.4}
\end{equation*}
$$

for any $0 \neq \omega \in \tilde{\mathbb{C}}$, then (2.2) directly follows.
Next, assume that index $\left(D^{-1} A\right)=1$ and that $D^{-1} A$ has precisely m ($m>0$) zero eigenvalues. Thus, in the Jordan normal form of $D^{-1} A$, there are exactly m Jordan blocks, corresponding to the eigenvalue zero, these blocks being all 1×1. Hence, there are m linearly independent eigenvectors of $D^{-1} A$ corresponding to these m zero eigenvalues, and, from (2.4), these m eigenvectors are evidently also eigenvectors of $Q(\omega)$, corresponding to m zero eigenvalues. Because these eigenvectors are linearly independent, the Jordan normal form of $Q(\omega)$ contains at least m Jordan blocks corresponding to the eigenvalue zero, for each $0 \neq \omega \in \tilde{\mathbb{C}}$. If $m=n$, so that all eigenvalues of $D^{-1} A$ are zero, then the hypothesis index $\left(D^{-1} A\right)=1$ implies that $D^{-1} A \equiv 0$. Thus, from (2.4), $I-\mathcal{E}_{\omega} \equiv \mathcal{O}$ for all $\omega \in \tilde{\mathbb{C}}$, from which (2.3) follows for $\nu=1$. Hence, we may assume that $m<n$. Now, for small $\omega \neq 0$, we can also write (2.4) as

$$
\begin{equation*}
Q(\omega)=D^{-1} A+\omega D^{-1} L\left(I-\omega D^{-1} L\right)^{-1} D^{-1} A \tag{2.5}
\end{equation*}
$$

so that $Q(\omega)$ can be viewed as a perturbation of $D^{-1} A$ for small $\omega \neq 0$. As such, to the remaining $n-m$ nonzero eigenvalues $\left\{\xi_{j}\right\}_{i=1}^{n-m}$ of $D^{-1} A$, we can, by a classical result of Ostrowski [9, p. 334], associate $n-m$ eigenvalues $\left\{\tau_{i}(\omega)\right\}_{j=1}^{n-m}$ of $Q(\omega)$ such that

$$
\begin{equation*}
\left|\xi_{i}-\tau_{i}(\omega)\right|=O\left(|\omega|^{1 / n}\right) \quad \text { for all } \quad 1 \leqslant j \leqslant n-m \tag{2.6}
\end{equation*}
$$

for all $\omega \neq 0$ sufficiently small. Because of (2.6), we see that the Jordan normal
form of $Q(\omega)$, for $\omega \neq 0$ sufficiently small, then has precisely m Jordan blocks associated with the eigenvalue zero, these blocks being all 1×1. Thus $\operatorname{index}(Q(\omega))=1$ for all $\omega \neq 0$ sufficiently small, which gives (2.3) for $\nu=1$.

Finally, if index $\left(D^{-1} A\right)=0$, a similar use of (2.6) gives (2.3) for $\boldsymbol{\nu}=0$.
To conclude this section, we state without proof the following lemma, which is a slight modification of Buoni and Varga [3, Theorem 2.2].

Lemma 2.2. Given any $A \in \mathbb{C}^{n, n}$ with index $\left(D^{-1} A\right) \leqslant 1$, then, for each $1 \neq \lambda(\omega) \in \sigma\left(巳_{\omega}\right)$, there exists $a 1 \neq \mu(\omega) \in \sigma\left(J_{\omega}\right)$ such that

$$
\begin{equation*}
|\lambda(\omega)-\mu(\omega)|=O\left(|\omega|^{1+1 / n}\right) \tag{2.7}
\end{equation*}
$$

for all $\omega \neq 0$ sufficiently small.

3. MAIN RESULTS

We now extend Theorem 3.1 of Buoni and Varga [3] to the simultaneous semiconvergence of J_{ω} and \mathscr{L}_{ω}.

Theorem 3.1. Given any $A \in \mathbb{C}^{n, n}$ with index $\left(D^{-1} A\right) \leqslant 1$, assume that if $\sigma\left(D^{-1} A\right) \backslash\{0\}$ is not empty, then there is a real $\hat{\theta}$ with $0 \leqslant \hat{\theta}<2 \pi$ for which

$$
\begin{equation*}
\min \left[\operatorname{Re}\left(e^{i \hat{\theta}} \xi\right): \xi \in \sigma\left(D^{-1} A\right) \backslash\{0\}\right]=: \eta>0 \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left[S_{J} \cap S_{e}\right] \backslash\{0\} \neq \varnothing \tag{3.2}
\end{equation*}
$$

More precisely, if $\sigma\left(D^{-1} A\right) \backslash\{0\}$ is empty, then

$$
\begin{equation*}
S_{J} \cap S_{\mathfrak{e}}=\tilde{\mathbb{C}} \tag{3.3}
\end{equation*}
$$

while if $\sigma\left(D^{-1} A\right) \backslash\{0\}$ is not empty so that (3.1) applies, then there exists an $r_{0}>0$ for which

$$
\begin{equation*}
S_{J} \cap S_{\mathrm{E}} \supset\left\{\omega=r e^{i \hat{\theta}}: 0 \leqslant r<r_{0}\right\} \tag{3.4}
\end{equation*}
$$

Proof. First, consider the case when index $\left(D^{-1} A\right)=0$, i.e., $D^{-1} A$ is nonsingular. Obviously, $\sigma\left(D^{-1} A\right) \backslash\{0\}$ is nonempty and the hypothesis (3.1) applies. But then, from Theorem 3.1 of [3], $\Omega_{J} \cap \Omega_{\mathfrak{Q}} \supset\left\{\omega=r e^{i \hat{\theta}}: 0<r<r_{0}\right\}$ for some $r_{0}>0$. On the other hand, as $J_{0}=\mathfrak{Q}_{0}=I$ from (1.4) and (1.5), we always trivially have that $0 \in S_{J} \cap S_{\mathfrak{P}}$. Hence, these two facts imply more than (3.4) in this case. Thus, we may assume that index $\left(D^{-1} A\right)=1$. In this case, if $\sigma\left(D^{-1} A\right)=\{0\}$, then $D^{-1} A \equiv \mathcal{Q}$, so that $J_{\omega}=I=\mathcal{E}_{\omega}$ for all $\omega \in \tilde{\mathbb{C}}$ from (1.4) and (2.4). Thus, $S_{J} \cap S_{\mathbb{E}}=\tilde{\mathbb{C}}$ in this case, which gives (3.3). Hence, we may assume in what follows that index $\left(D^{1} A\right)=1$ and that $\sigma\left(D^{1} A\right) \backslash\{0\}$ is not empty.

Consider any $\omega:=r e^{i \hat{\theta}}$ with $r>0$. From (1.4), we can express any eigenvalue $\mu(\omega)$ of J_{ω} as

$$
\begin{equation*}
\mu(\omega)=1-r e^{i \hat{\theta}} \xi, \quad \text { where } \quad \xi \models \sigma\left(D^{-1} A\right) \tag{3.5}
\end{equation*}
$$

Direct computation with (3.5) and (3.1) yields

$$
\begin{equation*}
|\mu(\omega)|^{2}=1-2 r \operatorname{Re}\left(e^{i \hat{\theta}} \xi\right)+r^{2}|\xi|^{2} \leqslant 1-2 r \eta+r^{2}|\xi|^{2} \tag{3.6}
\end{equation*}
$$

for any $0 \neq \xi \in \sigma\left(D^{-1} A\right)$, from which it follows that there is an $r_{1}>0$ such that

$$
\begin{equation*}
\gamma\left(J_{r e^{i \hat{\theta}}}\right)<1 \quad \text { for all } \quad 0<r<r_{1} \tag{3.7}
\end{equation*}
$$

Next, for any eigenvalue $\xi=0$ of $D^{-1} A$, its associated eigenvalue $\mu(\omega)$ of $J(\omega)$ is necessarily unity from (3.5). Moreover, the hypothesis index $\left(D^{-1} A\right)=1$ implies from (2.1) of Lemma 2.1 that index $\left(I-J_{\omega}\right)=1$ for any $0 \neq \omega \in \mathbb{C}$. Thus, from the conditions in Section 1 characterizing semiconvergence, J_{ω} is semiconvergent for all $\omega=r e^{i \hat{\theta}}$ with $0 \leqslant r<r_{1}$, i.e.,

$$
\begin{equation*}
S_{J} \supset\left\{\omega=r e^{i \hat{\theta}}: 0 \leqslant r<r_{1}\right\} . \tag{3.8}
\end{equation*}
$$

Continuing, consider now \mathscr{L}_{ω} for $\omega:=r e^{i \hat{\theta}}$ with $r>0$. From (2.3) of Lemma 2.1, it follows that, for all $\omega \neq 0$ sufficiently small, the Jordan blocks corresponding to any eigenvalue unity of L_{ω} are necessarily 1×1. Moreover, from (2.7) of Lemma 2.2, if $\lambda(\omega)$ is any eigenvalue of \sum_{ω} with $\lambda(\omega) \neq 1$, there is an associated eigenvalue $\mu(\omega)$ of J_{ω} with $\mu(\omega) \neq 1$ such that

$$
|\lambda(\omega)-\mu(\omega)|=\theta\left(r^{1+1 / n}\right)
$$

for all $\omega \neq 0$ sufficiently small, so that

$$
|\lambda(\omega)|^{2} \leqslant|\mu(\omega)|^{2}+\mathcal{O}\left(r^{1+1 / n}\right)
$$

Because $\mu(\omega) \neq 1$, we can apply (3.6), which gives

$$
\begin{equation*}
|\lambda(\omega)|^{2} \leqslant 1-2 r \eta+\theta\left(r^{1+1 / n}\right) \tag{3.9}
\end{equation*}
$$

Thus, there is an $r_{2}>0$ such that

$$
\begin{equation*}
\gamma\left(\mathscr{L}_{r e^{i t}}\right)<1 \quad \text { for all } \quad 0<r<\tau_{2} . \tag{3.10}
\end{equation*}
$$

Thus, by the conditions characterizing semiconvergence, it follows that

$$
\begin{equation*}
S_{\mathfrak{e}} \supset\left\{\omega=r e^{i \hat{\theta}}: 0 \leqslant r<r_{2}\right\} \tag{3.11}
\end{equation*}
$$

On choosing $r_{0}:=\min \left(r_{1} ; r_{2}\right)$, then (3.8) and (3.11) give the desired result of (3.4).

It is convenient to make the following
Definition 3.2. Given any $A \in \mathbb{C}^{n, n}$, then $D^{-1} A$ is said to be strongly semistable if (i) index $\left(D^{-1} A\right) \leqslant 1$ and if (ii)

$$
\begin{equation*}
\min \left[\operatorname{Re}(\xi): \xi \in \sigma\left(D^{-1} A\right) \backslash\{0\}\right]>0 \tag{3.12}
\end{equation*}
$$

provided that $\sigma\left(D^{-1} A\right) \backslash\{0\}$ is not empty.
With the above definition, we have, from Theorem 3.1, the particular result of

Corollary 3.3. Given any $A \in \mathbb{C}^{n, n}$ for which $D^{-1} A$ is strongly semistable, then there is an $r_{0}>0$ for which

$$
\begin{equation*}
S_{J} \cap S_{\mathbb{E}} \supset\left[0, r_{0}\right) \tag{3.13}
\end{equation*}
$$

In the above Corollary 3.3, it is natural to ask if there is a class of matrices for which, as in the original Stein-Rosenberg theorem [cf. (1.10)], the inclusion of (3.13) holds for the particular interval $[0,1)$. This is given in

Theorem 3.4. Given any $A=\left[a_{i, j}\right] \in Z^{n, n}$ with $a_{i, i}>0$ for all $1 \leqslant i \leqslant n$, let the matrices $D,-L$, and $-U$ in the splitting (1.3) of A be respectively the diagonal, the strictly lower triangular, and the strictly upper triangular parts of A. If A is an M-matrix with index $\left(D^{-1} A\right) \leqslant 1$, then

$$
\begin{equation*}
S_{J} \cap S_{\mathfrak{E}} \supset[0,1) \tag{3.14}
\end{equation*}
$$

Proof. Since D is a positive diagonal matrix, the hypotheses imply that $D^{-1} \mathrm{~A}$ is also an M-matrix with index $\left(D^{-1} \mathrm{~A}\right) \leqslant 1$. As such, $D^{-1} \mathrm{~A}$ is strongly semistable, so that (3.13) of Corollary 3.3 gives the existence of an $r_{0}>0$ with $S_{J} \cap S_{\mathcal{L}} \supset\left[0, r_{0}\right)$. Thus, the object of this proof is to show that we can, in fact, choose $r_{0}=1$. Of course, if $D^{-1} A$ is nonsingular, i.e., index $\left(D^{-1} A\right)=0$, then the statement $\Omega_{J} \cap \Omega_{\mathrm{Q}} \supset(0,1]$ from (1.10), coupled with the fact that 0 is always in $S_{J} \cap S_{\mathcal{L}}$, is stronger than that of (3.14). Hence, we may assume in what follows that $D^{-1} A$ is a singular M-matrix with index $\left(D^{-1} A\right)=1$.

Since F an M-matrix with index $(F) \leqslant 1$ is equivalent (cf. [2, p. 153]) to F an M-matrix with property c, then evidently $D^{-1} A$ is an M-matrix with property c. Thus every regular splitting of $D^{-1} A=M-N$ (i.e., $M^{-1} \geqslant 0$ and $N \geqslant 0$) satisfies $\rho\left(M^{-1} N\right) \leqslant 1$ and index $\left(I-M^{-1} N\right) \leqslant 1$ (cf. [2, p. 200]). However, since $D^{-1} A$ is singular, there is an $x \neq 0$ such that $D^{-1} A x=M x-$ $N \mathbf{x}=0$, whence $M^{-1} N x=x$. Thus, $1 \in \sigma\left(M^{-1} N\right)$, so that in fact $\rho\left(M^{-1} N\right)=1$ and $\operatorname{index}\left(I-M^{-1} N\right)=1$. Writing

$$
D^{-1} A=I-\tilde{L}-\tilde{U}, \quad \text { where } \quad \tilde{L}:=D^{-1} L \text { and } \tilde{U}:=D^{-1} U
$$

consider the two splittings $D^{-1} A=M_{1}-N_{1}=M_{2}-N_{2}$ of $D^{-1} A$, such that

$$
\begin{aligned}
& M_{1}:=\frac{1}{r} I \text { and } N_{1}:=\frac{1}{r}[(1-r) I+r \tilde{L}+r \tilde{U}], \quad \text { where } 0<r \leqslant 1 \\
& M_{2}:=\frac{1}{s}(I-s \tilde{L}) \text { and } N_{2}:=\frac{1}{s}[(1-s) I+s \tilde{U}], \quad \text { where } \quad 0<s \leqslant 1 .
\end{aligned}
$$

By definition, \tilde{L} and \tilde{U} are respectively strictly lower and strictly upper triangular nonnegative matrices, and it is readily verified that these two splittings of $D^{-1} A$ are regular splittings for the range of parameters considered. But, as it can be verified that $M_{1}^{-1} N_{1}=J_{r}$ and $M_{2}^{-1} N_{2}=\varrho_{s}$, then

$$
\begin{array}{lc}
\rho\left(J_{r}\right)=1 \text { and } \operatorname{index}\left(I-J_{r}\right)=1 & \text { for all } 0<r \leqslant 1 \\
\rho\left(\mathcal{L}_{s}\right)=1 \text { and } \operatorname{index}\left(I-\mathcal{L}_{s}\right)=1 & \text { for all } 0<s \leqslant 1 \tag{3.15}
\end{array}
$$

We next claim that $\gamma\left(J_{r}\right)<1$ for all $0 \leqslant r<1$. Obviously, as $\gamma\left(J_{0}\right)=0$ since $J_{0}=I$, we may assume that $0<r<1$. Now from (1.4), $J_{r}=r J_{1}+(1-r) I \geqslant \theta$ for any $0<r<1$. If J_{r} is irreducible for some (and hence every) r with $0<r<1$, the positivity of the diagonal entries for $0<r<1$ implies that J_{r} is primitive (cf. [11, Theorem 2.9, p. 49]). Therefore all eigenvalues $\mu(r) \neq 1$ of J_{r} satisfy $|\mu(r)|<1$ for all $0<r<1$, whence $\gamma\left(J_{r}\right)<1$ for $0<r<1$. Similarly, if J_{r} is reducible for some (and hence every) r with $0<r<1$, each irreducible diagonal block in its reduced normal form (cf. [11, p. 46]) will again have positive diagonal entries and hence be primitive, so that all eigenvalues $\mu(r) \neq 1$ of J_{r} again satisfy $|\mu(r)|<1$ for all $0<r<1$, whence $\gamma\left(J_{r}\right)<1$ for $0 \leqslant r<1$. Combining this with the first statement of (3.15), we deduce that $S_{J} \supset[0,1)$.

Finally, \mathcal{E}_{s} can be expressed

$$
\mathcal{E}_{s}=\left\{I+s \tilde{L}+\cdots+s^{n-1} \tilde{L^{n-1}}\right\}\{(1-s) I+s \tilde{U}\}
$$

so that \mathcal{L}_{s}, for $0 \leqslant s<1$, is a nonnegative matrix, all of whose diagonal entries are at least $1-s$. As the above argument showing that $\gamma\left(J_{r}\right)<1$ for $0 \leqslant r<1$ similarly shows that $\gamma\left(\mathcal{L}_{s}\right)<1$ for $0 \leqslant s<1$, we deduce, with the second statement of (3.15), that $S_{\mathfrak{P}} \supset[0,1)$. Thus, $S_{J} \cap S_{\mathfrak{Q}} \supset[0,1)$, giving the desired result of (3.14).

We first remark that Theorem 3.4 is equally valid with index $\left(D^{-1} A\right) \leqslant 1$ replaced by $\operatorname{index}(A) \leqslant 1$. Also, the real inclusion of (3.14), is sharp, i.e., it is not in general possible to increase the real interval $[0,1)$ in (3.14), as examples in Section 4 will amply show.

We next derive a divergence-type result analogous to that of Theorem 3.4.
Theorem 3.5. Given any $A \in \mathbb{C}^{n, n}$ with index $\left(D^{-1} A\right)>1$, then

$$
\begin{equation*}
S_{J}=\{0\} \tag{3.16}
\end{equation*}
$$

If $\sigma\left(D^{-1} A\right) \backslash\{0\}$ is not empty, assume for each real θ with $0 \leqslant \theta \leqslant 2 \pi$ that

$$
\begin{equation*}
\min \left[\operatorname{Re}\left(e^{i \theta} \xi\right): \xi \in \sigma\left(D^{-1} A\right) \backslash\{0\}\right] \leqslant 0 \tag{3.17}
\end{equation*}
$$

Then [cf. (1.8)]

$$
\begin{equation*}
\mathfrak{D}_{J}=\mathbb{C} \backslash\{0\} \tag{3.18}
\end{equation*}
$$

Proof. If $\operatorname{index}\left(D^{-1} A\right)>1$, it follows from (2.1) of Lemma 2.1 that index $\left(I-J_{\omega}\right)>1$ for any $0 \neq \omega \in \mathbb{C}$. By definition, J_{ω} then fails to be semiconvergent for any $0 \neq \omega \in \mathbb{C}$. On the other hand, since $J_{0}=I$ is trivially semiconvergent, then (3.16) follows.

Next, any eigenvalue $\mu(\omega)$ of J_{ω} can be expressed, using (1.4), as $\mu(\omega)=1$ $-\omega \xi$ where $\xi \in \sigma\left(D^{-1} A\right)$. Writing $\omega=r e^{i \theta}$, then

$$
\begin{equation*}
|\mu(\omega)|^{2}=1-2 r \operatorname{Re}\left(e^{i \theta} \xi\right)+r^{2}|\xi|^{2} \tag{3.19}
\end{equation*}
$$

If $\sigma\left(D^{-1} A\right) \backslash\{0\}$ is not empty, then any $\xi \in \sigma\left(D^{-1} A\right) \backslash\{0\}$ is nonzero. With (3.19) and the hypothesis of (3.17), we have, for each $r>0$ and each real θ, that there is $\mu\left(r e^{i \theta}\right) \in \sigma\left(J_{r e^{i \theta}}\right)$ for which

$$
\left|\mu\left(r e^{i \theta}\right)\right|^{2} \geqslant 1+r^{2}|\xi|^{2}>1
$$

Consequently, $\rho\left(J_{\omega}\right)>1$ for each $0 \neq \omega \in \mathbb{C}$, which gives (3.18).
Finally, as in [3], we can interpret the conditions (3.1) and (3.17) geometrically. Assuming $\sigma\left(D^{-1} A\right) \backslash\{0\}$ is not empty, set

$$
\begin{equation*}
K\left[\sigma\left(D^{-1} A\right) \backslash\{0\}\right]:=\text { closed convex hull of } \sigma\left(D^{-1} A\right) \backslash\{0\} \tag{3.20}
\end{equation*}
$$

With this notation, we establish the following analog of [3, Theorem 3.4].

Theorem 3.6. Given $A \in \mathbb{C}^{n, n}$, assume that $\sigma\left(D^{-1} A\right) \backslash\{0\}$ is not empty. Then

$$
\begin{equation*}
\left[S_{J} \cap S_{\mathscr{C}}\right] \backslash\{0\} \neq \varnothing \quad \text { iff } \quad 0 \notin K\left[\sigma\left(D^{-1} A\right) \backslash\{0\}\right] \text { and index }\left(D^{1} A\right) \leqslant 1 \tag{3.21}
\end{equation*}
$$

Proof. With the hypothesis that $\sigma\left(D^{-1} A\right) \backslash\{0\}$ is not empty, assume that index $\left(D^{-1} A\right) \leqslant 1$ and that $0 \notin K\left[\sigma\left(D^{-1} A\right) \backslash\{0\}\right]$. This latter assumption implies that there is a real $\hat{\theta}$ with $0 \leqslant \hat{\theta}<2 \pi$ for which (3.1) is valid. Consequently, from (3.2) of Theorem 3.1, then $\left[S_{J} \cap S_{e}\right] \backslash\{0\} \neq \varnothing$.

Conversely, suppose that $\left[S_{J} \cap S_{\mathcal{L}}\right] \backslash\{0\} \neq \varnothing$. Then, from Theorem 3.5, it follows that index $\left(D^{-1} A\right) \leqslant 1$. Thus, it remains to show that $0 \notin K\left[\sigma\left(D^{-1} A\right)\right.$ $\{0\}]$. Suppose, on the contrary, that $0 \in K\left[\sigma\left(D^{-1} A\right) \backslash\{0\}\right]$, where $\sigma\left(D^{-1} A\right)$ $\{0\}$ is nonempty. It easily follows that (3.17) is then valid, so that from (3.18)
of Theorem 3.5, $\mathfrak{D}_{J}=\mathbb{C} \backslash\{0\}$, whence $S_{J}=\{0\}$. As this contradicts the assumption that $\left[S_{J} \cap S_{\mathfrak{E}}\right] \backslash\{0\} \neq \varnothing$, then $0 \notin K\left[\sigma\left(D^{-1} A\right) \backslash\{0\}\right]$.

4. SOME EXAMPLES

In this section, we present five examples, the first three of which show that the real inclusion (3.14) of Theorem 3.4 is sharp, i.e., it cannot be in general increased.

Consider first the matrix

$$
A_{1}:=\left[\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \tag{4.1}\\
0 & 1 & -1 & 0 & 0 \\
-\frac{1}{2} & 0 & 1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 0 & 1
\end{array}\right], \quad \text { with } \quad D_{1}:=I .
$$

Clearly, A_{1} is an element of $Z^{5,5}$, and, on writing $A_{1}=: I-B_{1}$, the directed graph of the nonnegative matrix B_{1} shows that B_{1} is irreducible and primitive with $\rho\left(B_{1}\right)=1$. Thus, A_{1} is a singular M-matrix, and it also follows that index $\left(D_{1}^{-1} A_{1}\right)=1$. Therefore the associated iteration matrices $J_{r}^{A_{1}}$ and $E_{r}^{A_{1}}$ [for the "usual" splitting of (1.3)] are both necessarily semiconvergent for any r in $\left[0,1\right.$), from (3.14) of Theorem 3.4. In addition, since $J_{1}^{A_{1}}=B_{1}$, the above properties for B_{1} give that $J_{1}^{A_{1}}$ is semiconvergent. On the other hand, direct computations give us that

$$
\begin{align*}
\mathfrak{L}_{1}^{A_{1}} & =\left[\begin{array}{l|llll}
0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{array}\right] \\
& =:\left[\begin{array}{l|llll}
0 & 1 & 0 & 0 & 0 \\
\hline 0 & & & \\
0 & & E & \\
0 & &
\end{array}\right], \tag{4.2}
\end{align*}
$$

so that $\sigma\left(\mathcal{L}_{1}^{A_{1}}\right)=\{0\} \cup \sigma(E)$. Since the 4×4 matrix E above is nonnegative, irreducible, and cyclic of index 2 with $\rho(E)=1$, then (cf. [11, p. 38]) ± 1 are
eigenvalues of E and $\mathfrak{E}_{1}^{A_{1}}$. Thus, $\mathfrak{E}_{1}^{A_{1}}$ cannot be semiconvergent, and thus $l \notin S_{J} \cap S_{\mathrm{E}}$.

Next, a well-known result of Kahan (cf. [11, p. 75]) gives that

$$
\begin{equation*}
\rho\left(\mathcal{L}_{r}^{A_{1}}\right) \geqslant|r-1| \quad \text { for any complex number } r \tag{4.3}
\end{equation*}
$$

Consequently, for any $\delta>0, \rho\left(\mathcal{L}_{-\delta}^{A_{1}}\right) \geqslant 1+\delta>1$, whence $-\delta \notin S_{J} \cap S_{\mathcal{L}}$ for any $\delta>0$. This establishes the sharpness of the inclusion (3.14) in Theorem 3.4 for the matrix A_{1} of (4.1).

We remark that Professor Hans Schneider (personal communication) originally used the matrix A_{1} of (4.1) to negatively answer a question, posed by Neumann and Plemmons [7, p. 273], on whether $\gamma\left(\mathcal{E}_{1}\right) \leqslant \gamma\left(J_{1}\right)$ is valid for any $A \in Z^{n, n}$ having (i) all diagonal entries of A positive, and (ii) $\rho\left(J_{1}\right)=$ $\rho\left(\mathcal{L}_{1}\right)=1$. The matrix Λ_{1} of (4.1), which satisfies these hypotheses, provides a counterexample, since

$$
\begin{equation*}
\gamma\left(J_{1}^{A_{1}}\right)<\gamma\left(\sum_{1}^{A_{1}}\right)=1 \tag{4.4}
\end{equation*}
$$

More precisely, calculations we have performed for this matrix of (4.1) give that

$$
\begin{array}{lll}
\gamma\left(J_{r}^{A_{1}}\right)<\gamma\left(\sum_{r}^{A_{1}}\right)<1 & \text { for all } & 0.925943<r<1 \\
\gamma\left(\sum_{r}^{A_{1}}\right)<\gamma\left(J_{r}^{A_{1}}\right)<1 & \text { for all } & 0<r<0.925943 \tag{4.5}
\end{array}
$$

We remark that the inequality in (4.4) also provides a counterexample to a result in Berman and Plemmons [2, p. 200, Theorem 6.21, part 2].

Next, consider the matrix

$$
A_{2}:=\left[\begin{array}{rrr}
1 & -1 & 0 \tag{4.6}\\
-\frac{1}{2} & 1 & -\frac{1}{2} \\
0 & -1 & 1
\end{array}\right], \quad \text { with } \quad D_{2}:=1
$$

On writing $A_{2}=: I-B_{2}$, the directed graph of the nonnegative matrix B_{2} shows that B_{2} is cyclic of index 2 with $\sigma\left(B_{2}\right)=\{1,0,1\}$. Thus, A_{2} is a singular M-matrix, and it also follows that index $\left(D_{2}^{-1} A_{2}\right)=1$. Thus, (3.14) of Theorem 3.4 again gives that the iteration matrices $J_{r}^{A_{2}}$ and $\mathcal{L}_{r}^{A_{2}}$ both semiconverge for any r in $[0,1)$. Now, however, since $J_{1}^{A_{2}}=B_{2}$, the above cyclic property of B_{2} shows that $J_{1}^{A_{2}}$ does not semiconverge (cf. [6]). On the
other hand, since

$$
\mathcal{E}_{1}^{A_{2}}=\left[\begin{array}{lll}
0 & 1 & 0 \tag{4.7}\\
0 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

then $\mathbb{L}_{1}^{A_{2}}$ semiconverges. Since the inequality (4.3) also applies in this case, we see that the inclusion (3.14) of Theorem 3.4 is sharp for the matrix A_{2} of (4.6). In this case, we remark that

$$
\begin{equation*}
\gamma\left(\sum_{r}^{A_{z}}\right)<\gamma\left(J_{r}^{A_{2}}\right)<1 \quad \text { for all } \quad 0<r<1 \tag{4.8}
\end{equation*}
$$

which resembles one of the inequalities of the classical Stein-Rosenberg theorem in the nonsingular case.

Next, consider the matrix

$$
A_{3}:=\left[\begin{array}{rrr}
1 & -1 & 0 \tag{4.9}\\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right], \quad \text { with } \quad D_{3}:=I
$$

It is easily seen that $\sigma\left(D_{3}^{-1} A_{3}\right)=\left\{0,1-\eta, 1-\eta^{2}\right\}$, where η is any primitive root of $\eta^{3}-1$, and that A_{3} is a singular M-matrix with index $\left(D_{3}^{-1} A_{3}\right)=1$. Thus, from Theorem 3.4, $J_{r}^{A_{3}}$ and $\mathscr{L}_{r}^{A_{3}}$ both semiconverge for all $0 \leqslant r<1$. However, since $\sigma\left(J_{1}^{A_{3}}\right)=\left\{1, \eta, \eta^{2}\right\}$ and since $\sigma\left(\mathcal{L}_{1}^{A_{3}}\right)=\{-1,0,+1\}$, neither $J_{1}^{\Lambda_{3}}$ nor $\mathcal{L}_{1}^{A_{i s}}$ semiconverges. Since the inequality (4.3) also applies in this example, we thus see that the inclusion (3.14) of Theorem 3.4 is sharp for the matrix A_{3} of (4.9). In this case, as in the previous example, we have that

$$
\begin{equation*}
\gamma\left(\varrho_{r}^{A_{3}}\right)<\gamma\left(J_{r}^{A_{3}}\right)<1 \quad \text { for all } \quad 0<r<1 \tag{4.10}
\end{equation*}
$$

We remark that the three examples given above were selected to illustrate all possible situations concerning the nonsemiconvergence of L_{1} and/or J_{1} for singular M-matrices with index $\left(D^{-1} A\right)=1$.

Finally, in each of the three examples given above, it is the case that there exists an $r_{i}>0$ such that [cf. (4.5), (4.8), (4.10)]

$$
\begin{equation*}
\gamma\left(\mathcal{E}_{r}^{A_{i}}\right)<\gamma\left(J_{r}^{A_{i}}\right)<1 \quad \text { for all } 0<r<r_{i}, \quad i=1,2,3 \tag{4.11}
\end{equation*}
$$

This, in spirit, resembles a consequence of the classical Stein-Rosenberg
theorem in the convergent case, i.e., $\rho\left(\mathcal{L}_{r}^{A}\right)<\rho\left(J_{r}^{A}\right)<1$ for all $0<r \leqslant l$. That (4.11) fails to be true for every singular M-matrix with index $\left(D^{-1} A\right)=1$ is the point of our next example.

Consider the matrix

$$
A_{4}:=\left[\begin{array}{rrr}
1 & -1 & 0 \tag{4.12}\\
-\frac{1}{2} & 1 & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right], \quad \text { with } \quad D_{4}:=I
$$

Reasoning as in the previous examples, A_{4} is a singular M-matrix with index $\left(D_{4}^{-1} A\right)=1$, so that $S_{J} \cap S_{\mathfrak{Q}} \supseteq[0,1)$ from (3.14) of Theorem 3.4. In this case, it can be vierfied that $\sigma\left(A_{4}\right)=\left\{0, \frac{3}{2}, \frac{3}{2}\right\}$, and that index $\left(\frac{3}{2} I-A_{4}\right)=2$. Moreover, it can be further verified that

$$
\begin{array}{lll}
\gamma\left(J_{r}^{A_{4}}\right)<\gamma\left(\mathscr{L}_{r}^{A_{4}}\right)<1 & \text { for all } & 0<r<\frac{3}{4}, \\
\gamma\left(\sum_{r}^{A_{4}}\right)<\gamma\left(J_{r}^{A_{4}}\right)<1 & \text { for all } & \frac{3}{4}<r<\frac{4}{3} . \tag{4.13}
\end{array}
$$

The first of the inequalities of (4.13) thus provides a counterexample to (4.11) holding for all singular M-matrices with index $\left(D^{-1} A\right)=1$. It is interesting to remark that there is further intertwining of $\gamma\left(J_{r}^{A_{4}}\right)$ and $\gamma\left(\mathcal{E}_{r}^{A_{4}}\right)$ in this example, in that

$$
\begin{array}{lll}
\gamma\left(J_{r}^{A_{4}}\right)<\gamma\left(\sum_{r}^{A_{4}}\right) & \text { for all } & 0<r<\frac{3}{4}, \\
\gamma\left(\mathcal{E}_{r}^{A_{4}}\right)<\gamma\left(J_{r}^{A_{4}}\right) & \text { for all } & \frac{3}{4}<r<3.154701, \tag{4.14}\\
\gamma\left(J_{\tau}^{A_{4}}\right)<\gamma\left(\sum_{\tau}^{A_{4}}\right) & \text { for all } & 3.154701<r<\infty
\end{array}
$$

We remark that the inequalities of the first display of (4.13) are just the reverse of what one expects in the classical Stein-Rosenberg theorem, and this is due in this case to the fact that index $\left(\frac{3}{2} I-A_{4}\right)=2$. (For an explanation of this inequality reversal, see Buoni and Varga [4].)

We finally remark that it is not necessary that the index of some nonzero eigenvalue [of a singular M-matrix with index $\left(D^{-1} A\right)=1$] exceed unity to achieve both a counterexample to (4.11) and an analog of the intertwining of (4.14). Specifically, with

$$
A_{5}:=\left[\begin{array}{rr}
1 & -1 \tag{4.15}\\
-1 & 1
\end{array}\right], \quad \text { with } \quad D_{5}:=I
$$

it can be verified that

$$
\begin{array}{lll}
\gamma\left(J_{r}^{A_{5}}\right)<\gamma\left(\sum_{r}^{A_{5}}\right) & \text { for all } & -\infty<r<2-\sqrt{2} \\
\gamma\left(\sum_{r}^{A_{5}}\right)<\gamma\left(J_{r}^{A_{5}}\right) & \text { for all } & 2-\sqrt{2}<r<2+\sqrt{2} \tag{4.16}\\
\gamma\left(J_{r}^{A_{5}}\right)<\gamma\left(\sum_{r}^{A_{5}}\right) & \text { for all } & 2+\sqrt{2}<r<\infty
\end{array}
$$

REFERENCES

1 A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
2 A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic, New York, 1979.
3 J. J. Buoni and R. S. Varga, Theorems of Stein-Rosenberg type, in Numerical Mathematics (R. Ansorge, K. Glashoff, and B. Werner, eds.), ISNM 49, Birkäuser, Basel, 1979, pp. 65-75.
4 J. J. Buoni and R. S. Varga, Theorems of Stein-Rosenberg type II. Optimal paths of relaxation in the complex domain, in Elliptic Problem Solvers (M. H. Schultz, ed.), Academic Press, New York, 1981, pp. 231-240.
5 K. Hensel, Über Potenzreihen von Matrizen, J. Reine Angew. Math. 155:107-110 (1926).

6 C. D. Meyer and R. J. Plemmons, Convergent powers of a matrix with applications to iterative methods for singular linear systems, SIAM J. Numer. Anal. 14:699-705 (1977).
7 M. Neumann and R. J. Plemmons, Convergent nonnegative matrices and iterative methods for consistent linear systems, Numer. Math. 31:265-279 (1978).
8 R. Oldenburger, Infinite powers of matrices and characteristic roots, Duke Math. J. 6:357-361 (1940).

9 A. M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic, New York, 1973.
10 P. Stein and R. Rosenberg, On the solution of linear simultaneous equations by iteration, J. London Math. Soc. 23:111-118 (1948).
11 R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.

12 D. M. Young, Iterative Solution of Large Linear Systems, Academic, New York, 1971.

[^0]: *Dedicated to Professor John Todd on his seventieth birthday, 16 May 1981.
 ${ }^{\dagger}$ Research supported by the Air Force Office of Scientific Research at Kent State University during summer 1979 and summer 1980.
 ${ }^{\ddagger}$ This author would like to thank Kent State University for making funds available for a visit to its Department of Mathematics.
 ${ }^{5}$ Research supported by the Air Force Office of Scientific Research and the Department of Energy.

